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Abstract--A generalized approach has been made to find the parameters strongly influencing the 
anomalous thermal conductivity behavior in the critical point region. For an analysis of the mathematical 
character of the critical anomaly, the two commonly used thermodynamic variables, temperature and 
density, and the two characteristic parameters, critical compressibility factor, Zc, and De Boer quantum 
parameter, A*, have been adopted. 

INTRODUCTION 

The critical point is a point of incipient instability. As 
a consequence large density fluctuations are present in 
fluid in the vicinity of the gas-liquid critical point. These 
density fluctuations cause an anomalous behavior of 
many tlaermophysical properties in the critical region. 

For instance, the isothermal compressibility, the ther- 
mal expansion coefficient and the speicific heat of fluids 
all diverge at the gas-liquid critical point. Anomalous ef- 
fects are also encountered when one studies the beha- 
vior of the thermal conductivity and the viscosity of 
fluids near the critical point. While a critical enhance- 
ment in the thermal conductivity of fluids has been 
noticed up to temperatures 20% above the critical 
temperature, the critical enhancement in the viscosity of 
fluids only appears at temperatures less than 3% from 
the critical temperature. Thus, one must not ignore cer- 
tain critical anomalies as a system's operating conditions 
approach a critical point. 

The thermal conductivity of fluids near the critical 
point is commonly separated into a normal thermal con- 
ductivity, dknormaL in the absence of critical fluctua- 
tio~ls and a critical enhancement, Ak, due to the critical 
fluctuations: 

k = k . . . .  al + A k  (1) 

The thermal conductivity as a function of density is 
schematically shown in Fig. 1. Outside the critical 
region, the thermal conductivity, k, is to be identified 
with the normal thermal conductivity, kno,'man. Inside 
the critical region, kno,,,a~ is defined empirically by ex- 
trapolating the behavior of the normal thermal conduc- 
tivity outside the critical region into the critical region. 
Excess thermal conductivity is defined as, 

kexce ~ = k,orm ~ - k* (2) 

Where k* is the thermal conductivity at the same tempe- 
rature of fluids in the dilute gaseous state. 

THEORETICAL BACKGROUND 

2.1. Brokaw's Theory 
Attempts to treat quantitatively the enhancement of 

thermal conductivity in the critical region have been 
limited because of the abrupt behavior in this region To 
explain this anomalous behavior, the enhancement was 
attributed to the association and dissociation of cluster 
diffusing in the presence of temperature gradient. This 
approach was pursued to a considerable degree by 
Brokaw [1]. 

He assumed that the thermal conductivity near the 
critical point could be described in terms of reacting gas. 
While he recognized that there exists a spectrum of 
clusters sizes, for simplicity, the gas was assumed to con- 
sist of a monomer and a single large cluster of n- 
monomers, i.e., 

nX 1 - -  X, (3) 

To obtain the anomalous part of thermal conductivity in 
the critical region, he developed an expression as, 

Ak = C I CprDI(Dln/Du) (4) 

where the reacting specific heat, Cpr, is defined as an ex- 
cess specfic heat, 

Cpr = cp(P, T) - Cpo(T) (5) 

and C 1 is a adjustable constant. This constant is deter- 
mined by matching the theory to a single experimental 
data point. Once C 1 is determined, the thermal conduc- 
tivity over the entire region can be found. However, this 
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Fig. 1. Schematic  representat ion of  the thermal 

conductivity as a function of  density  at a 

temperature s l ight ly  above the cr i l i ca l  

temperature. 

approach is difficult to use because it requires the in- 
troduction of many empirically determined constants. 

2.2 M m l e  C o u p l i n g  T h e o r y  
Theoretical prediction of the mode coupling theory 

can be obtained from the simple argument of Arcovito et 
al. [2] which assumed that the mobility of clusters is 
purely a diffusional process. For the diffusional involve- 
ment of these clusters, the Einstein relation for the diffu- 
sion coefficient can be expressed as follows: 

D = kT/~ (6) 

where k is the Boltzmann constant, T is temperature 
and ~ is a friction coefficient. When this friction coeffi- 
cient is identified with the hydrodynamic friction coeffi- 
cient predicted by Stoke's law for a spherical droplet of 
radius ~, it becomes, 

6 x/~ ~ (7) 

where ,.,~ is the shear viscosity. Siibstituting Eztuation (7) 

into Equation (6), tim diffusion coefficient becomes, 
D = kTl6:~/~r t (8) 

Kawasaki [3] assumed a direct analogy belween this dif- 
fusion coefficient and thermal diffusivity to couple these 
two phenomena into the relationship 

where ..lk represents the thermal conductivity enhance- 
ment in the critical point region and ,--1C~= C~ - C v. h-, 
the derivation of Equation (9) it is assumed that the 
shear viscosity of ;~ does not exhibit any anomalous 
behavior near me critical point. This assumption is not 
strictly justified, but the anomalous behavior of u turns 

odt to be sufficiently small so that it can be neglected for 
most practical purposes. 

Equation (9) can be rearranged to present the 
enhancement of thermal conductivity as follows: 

g k  = (kT/6~/~)p (Cp- C~) (10) 

In order to make Equation (10) vanish for conditions 
removed from tile critical region, Hanley et al. [4] ex- 
tended Equation (10) using an empirical asymptotic 
function as follows: 

~k = (kT/6:~/~:) p (Cp -C0f (AT*, .~p *) (11) 

where the function f(AT* ,3p*isatisfies the boundary 
conditions, 

lim f (,AT*, ~p*) .= l 
AT*, Ap*-~ 0 

and 

lira f (BT*. Ap*) = 1 (12) 
Z.VI-'*, Ap *--* co 

whereAT* = T R - I and ,dip* = pR -1. Utilizing the 
measurements for the thermal conductivity enhance- 
ment of carbon dioxide, Hanley et al. proposed the 
form and developed the coefficients of this function to 
be, 

f (AT*, Ap*)=exp  ( -18 .66  [AT* ]'). 

exp ( -  4.25 lap* I') (I3) 

Using the thermodynamic relation, 

C~, -Cv= (T/p~ (3P/OT)~(3p/"OP)~ (14) 

where (1/O) 3p/O P)r is the isothermal compressibility and 
substituting Equation (14) into Equation (11) the following 
relationship results: 

Ak: [(k'l'~/6;r,~:) �9 (0[:'/3"I')0 (Op/3P)r~/ 
exp(18.66! AT* ~q-4.25 Ap*I ") (15) 

where ~ is a long range correlation length that represents 
the average radius of the critical state clusters. This long 
range correlation length can be determined experimental- 
ly from light scattering or X-ray scattering data. Assuming 
that the correlation length, }, can be approximated by the 
Ornstein and Zernike formula, Sengers [5] obtained the 
following relationship, 

= R(nkTKT)~ (16) 

where n is the number density, k Boltzmann's constant, R 
a proportionality constant, usually referred to as short 
range correlation length and K T isothermal compressibi- 
lib,. 

The expression given by Equation (11) possesses 
setoi-empirical arguments for its development and saris- 
factodly represents the thermal conductMty enhance- 
men,.' in the critical region for a few substances for which 
experimental information is available. Additional ther- 
mal conductivity measurements in this ~egion are need- 
ed tc test its applicability beyond the substances con- 
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sidered. However, it should be recognized that the ap- 
plication of this relationship requires extensive in- 
formation for a substance in the critical region. More 
often than not, such information is not readily accessible 
and therefore the application of Equation (11) becomes 
limked to substances whose physical properties are well 
defined in the critical region. 

GENERAliZED TREATMENT OF THERMAL 
CONDUCq'IVITY BEHAVIOR IN THE CRITICAL 

POINT REGION 

The throries and experimental data that exist at the 
present time do not allow unambiguous resolution of the 
question of the character of the thermal conductivity near 
the critical point of a pure fluid. Even the modern theories 
include a number of adjustable parameters or they pos- 
sess physical properties at the critical point which are 
very difficult or impossible in the present level to measure 
or predict. This lack of information makes current theo- 
ries meaningless for the estin-tation of transport properties 
in the ciritical region. Aiso, no unified approach in the 
generalized manner has been attempted for critical ther- 
mal conductivity behavior. 

In this connection, a qualitative approach has been 
ma.cie to find the parameters strongly influencing the 
thermal conductivity in the critical region. As a first ap- 
proximation, the two commonly used thermodynamic 
variables, temperature and density, and the two 
characteristic parameters, critical compressibility factor, 
Z o ,rod De Boer quantum parameter, A*, have been 
adopted. Therefore, the criitical thermal conductivity 
enhancement, Ak, can be generally 
expressed as, 

F !Ak, AT*, Ap*;Zc, A*) -- 0 (17) 

where A* is defined as, 
A*=h/a(mr (18) 

where h is Planck's constant, m the mass of a molecule, 
e the maximum energy of attraction and ~ the collision 
diaraeter for Lennard-Jones potential. The quantity A* 
ass~ mes large values for the quantum gases due to the 
small values of the three factors ~, m and ~ of these 
gases. 

According to the scaling method, Equation (17) may 
be expressed with the scaling functions f{dp*) and 
g(`a,o*) for the remaining variables Ak andAT* and 
written as, 

X (Ak/f (..4p*), `aT*./g (An*);Zr A*l = 0 (19) 

which can be solved forzAk/f(,.4,o*) as, 

~,k= f !3o*) u (AT*/g (~p*) ; Z,:, A*] (20) 
[n Equation (20)Ap* was chosen as a scaling variable for 
the remaining variables, Ak and AT*. ,aT* can be also 

selected as a scaling variable to yield the following ex- 
pression: 

Ak = h (AT*) V (Ap*/k (AT*) ; Zc. A*] (21) 

The power law assumption near the critical point in- 
dicates that the scaling functions f(Ap*), g(&o*), h(-4T*) 
and k(AT*) can be expressed as, 

f',Ap*! c l Ap* I 
g ( A p * ;  c i z l p * l "  
h ( A T * ) - d ]  AT* [ * 
k (,~T*) - d' I AT* I " (22) 

However, the conditions under which both Equation 
(20) forAp*- scaling and Equation )21) forAT*-scaling 
describe the same physical function must be establish- 
ed. The substitutuon of the power law assumptions, 
Equation (22) into Equation (20) yields the following ex. 
pmssion: 

,~k=c I Ap* I "U[AT*/c  ]Ap* I ~;Zc, A*) 
- - c (dT*)  ~'/ " ( I  zIT*'/~)~'U 

[( I Ap* I / , ~ r  *'~") "/c';Zc, A*) 
=c(AT*)" / "W~ I &o* i / a T * ' / " ; Z c ,  A*] (23) 

where the functional relationship between LI and V for 
any physical variable, V, can be written as 

V (v; Zc, A*) = vaU (v-"/c';Zr A*) (24) 

The comparision of Equation (21) with Equation (23) 
produces the relationships, which can be expressed as, 

h (AT*) = c  (AT*) ~/~ and k ',AT*) = A T  *'/'.` (25) 

Therefore, the relationships of the exponents in Equa- 
tion (25) can be represented as follows: 

4 =  )ff,u and ~= 1/tl (26) 
Thus, Equation (20) and Equation (21) are equivalent if 
the scaling functions f(AA), ~AA), h(z~T*) and k(AT*) 
are pure powers. However, Equation (20) will be used as 
a basis for further development of the generalization of 
thermal conductivity behavior near the critical point. 
The values of the constant c' and the exponent ,u in 
Equation (20) may be obtained from the critical expo- 
nent along the coexitence curve, fl, and the variable x 
which were expressed as 

Ap*=, ~ B [ ,..IT*} '~ (27) 

and x = A T * /  ,_4p* t "~ (28) 
Since x= x o along the coexistence curve, the following 
relationships may be justified; 

c ' = x , = : B  ' ~ ~ = l / f l  (29) 

Thus, the thermal conductivity behavior near the critical 
point in a comprehensive manner  can be expressed as, 

Ak~c/f (Z~., ,4.*) = [Ap* I ~W (X/Xo) (30) 

where the thermal conductivity parameter, ~c= 
MV2Tffpff3t2v~ s'6, was obtained from dimensional  
analysis. In Equation (28), the absolute value Ap* is 
taken ifAkr c is symraetdc with respect to #=Pc- Table 1 
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Table  1. Basic parameters and deviations resulting 
from Eq. (32). 

Properly-~ He-3 Ar Xe CO 2 H20 

M 3.016 39.948 131.30 44 .01  18.015 
T o ~ 3.3082 150.76 289.73 304.11 647.13 
Pc, atm 1.13 48.1 57.64 7 2 . 7 9  217.6 
Pc, g/cm3 0.0045 0.533 ]. 110 0.468 0.322 

c m  3 
v o - -  72 .99  7 4 . 9 5  118.29 94.04 56.31 
Zc g-mole 0.305 0 . 2 9 1  0 . 2 8 7  0.274 0.231 

r 0.1340 0.0783 0.1421 0.0737 0.0298 
a, A 2.56 3.542 4.047 3 .941  2.641 
~/x ,  ~ 10.2 93.3 231.0 1 9 5 . 2  809.1 

A* 3.082 0.202 0_0621 0.120 0.137 
xo 0.489 0.183 0.183 0 . 1 4 1  0.100 
f 0.0029 0.0532 0.0465 0.0569 0.1557 

No. of 
4 6 72 60 26 points 

% Dev. 8.24 12.87 6.81 6.38 6.50 

lists the values of r Zc, A* and Xo for pure fluids in- 
vestigated in this study. The values of Xo were taken 
from Sengers et al.[6]. The thermal conductivity data of 
helium-3 [7], argon [8], xenon [9], carbon dioxide [10] 
and water [11] available in the literature were used to 
show the characteristic behavior of each fluid. Fig. 2. in- 
dicates ~!hat the anomalous parts of the dimensionless 
thermal conductivities along the critical isochore,Akc(p c, 
AT*) r162 these fluids have a linear dependence onAT* 
in log-log coordinates with a slope of approximately 
0.63, but with a slight curvature removed from the 
critical temperature. Therefore, 

ak~r (Zc, A*) cc I AT* I -* (31) 

In this figure, helium-3 with Z c = 0.305 and A* = 3.082 
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Fig. 2. 

- x l 0  ~ z~ 
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3. Xenon 0. 287 

~ " L ' ~ . ' ~  --..- 4. Carbo,, di oxid.. 0.274 

o ~'"~ " ~ 0, 231 

0. 08 1 " ~ .  "%~ 

A* 
3. 082 
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0. 0621 
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0. 001 0.01 0. 1 
A'F* 

Relationship between the thermal conduc-  

t i v i t y  along the critical isochore, Akr 

and the normalized temperature, AT* 

has the lowest value of AkcC, cand water with Z c =0.231 
and A* = 0.137, the highest. This fact infers that the 
critical compressibility factor and De Boer quantum 
parameter strongly influence the enhancement of the 
thermal conductivity near the critical point. However, 
additional experimental works with different types of 
fluids are needed to establish the actual functional rela- 
tionship between Akcr and Z~ and A*. 

It should be noted that Equation (30} lms been 
developed under the assumptions that the thermal con- 
ductivity enhancement, ,~k, is symmetric along the 
critical isochore, i.e., p = Pc, and follows a power-law 
behavior. The existence of a small asymmetry inAk has 
been confirmed in many experimental studies. Thus, it 
becomes necessary to introduce a symmetrizing factor 
in Equation (30) to overcome the asymmetric behavior 
of Ak with respect to p = Pc The symmetrizing function 
f(p, T) can be defined by the condition: 

f (pc - Ap, T) Ak (pc - Ap, T) 

~= f (pc + Ap, T) ~k (pc + Ap, T) (32) 
The symmetrizing-function f(p, T), was empirically 
found to be p, 0.s. In Equation (30)Ak has to be changed 
to the symmetrized function, Akp~, '~2 so that the power 
law assumptions can be justified in the neighborhood of 
the critical point. 

Akr (Zc, A*) = I Ap* I ~ W (X/Xo) (33) 
The value of ;, is assumed to be temperature dependent 
in order to more or less overcome the limitation of the 
power-law assumption. The generalized behavior of the 
thermal conductivity enhancement has been assumed 
to have the functional expression of 

logiAkr I Ap* I ~v ~" f (Zc, A*) ) = a(log( (x+Xo)/ 

• )~ P• b (log ( (x+ Xo)/Xo) ) q (34) 

where a, b, c, p, q and r are assumed to be constants ap- 
plicable to all substances. A nonlinear regression 
analysis with the experimental measurements of xenon 
by Oosting have been used to produce the values of 

a = -0.770858 p = -0.457740 
b = -0.482894 q = 0.177897 
c = 2.260902 r = 0.006463 

Equation (34) with these constants has been applied to 
helium -3, argon, carbon dioxide and water to yield the 
values of f(Z c, A*) for these substances which are 
presented in Table 1. The generalized relationship for 
the thermal conductivity enhancement of these five 
substances are shown in Fig. 3. The average deviations 
between the calculated values using Equation (34) and 
the experimental values are included in Table 1. 

It is difficult at this time-to find the relationship bet- 
ween f and Z c and A* with this limited information. Fur- 
thermore, the power law assumption can only be ap- 
plied in the close vicinity of the critical point. Therefore, 
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this assumption has to be changed when an accurate 
equation of state along the coexistence curve is 
established. 
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CONCLUSION 

x 0 :va lue  of scaling variable, x, along the coex- 
istence curve 

"Z c : critical compressibility factor 
G r e e k  le t ters  
/9 critical exponent for coexistence curve 
~ Lennard-Jones force constant, maximum energy 

of attraction 
friction coefficient 

.~ Boltzmann constant 
A* De Boer quantum parameter 
3., ,u exponents in equation (20) 
,a viscosity, poises 

long range correlation length 
a-, ~ exponents in equation (20) 
~p* normalized density, p, 1 

average distance between molecular centers 
O~ thermal conductivity paramenter, M ~ Tc/Pc ~ 

Vc5~6 

S u b s c r i p t  
C critical constant 
R reduced variable 
S u p e r s c r i p t  
* dilute gaseous state 

A generalized equation has been formulated for the 
critical enhancement to the thermal conductivity whk:h 
represents existing experimental data in the critical 
region. This equation is based on the thermodynamic 
behavior in the vicinity of the gas-liquid critical point 
with well established thermodynamic properties. In 
spite of the increasing demand on accurate data for ther- 
mal conductivity near the critical point, a few ex- 
periments for simple fluids have been carried out. Thus, 
future works, both experimental and analytical, are 
needed to resolve the issue.,; associated with the abnor- 
mal behavior of the thermal conductivity in the critical 
point region in order to this generalized relationship to 
many different types of substances. 

NOMENCLATURE 

a,b, c : constants 
D : self-diffusivity, Cm2/sec 
h : Planck's constant 
k : thermal conductivity, cal/sec, cm ~ 
A,k :cr i t ical  thermal conductivity enhancement ,  

,,cal/sec. cm ~ 
m : mass of a molecule 
p,q, r : constants 
z~T* : normalized temperature, TR-1 
x - density-temperature scaling variable 
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