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Abstract— A generalized approach has been made to find the parameters strongly influencing the
anomalous thermal conductivity behavior in the critical point region. For an analysis of the mathematical
character of the critical anomaly. the two commonly used thermodynamic variables, temperature and
density, and the two characteristic parameters, critical compressibility factor, Zc, and De Boer quantum

parameter, A*, have been adopted.

INTRODUCTION

The critical point is a point of incipient instability. As
a consequence large density fluctuations are present in
fluid in the vicinity of the gas-liquid critical point. These
density fluctuations cause an anomalous behavior of
many thermophysical properties in the critical region.
For instance, the isothermal compressibility, the ther-
mal expansion coefficient and the speicific heat of fluids
all diverge at the gas-liquid critical point. Anomalous ef-
fects are also encountered when one studies the beha-
vior of the thermal conductivity and the viscosity of
fluids near the critical point. While a critical enhance-
ment in the thermal conductivity of fluids has been
noticed up to temperatures 20% above the critical
temperature, the critical enhancement in the viscosity of
fluids only appears at temperatures less than 3% from
the critical temperature. Thus, one must not ignore cer-
tain critical anomalies as a system’s operating conditions
approach a critical point.

The thermal conductivity of fluids near the critical
point is commonly separated into a normal thermal con-
ductivity, dknomal, in the absence of critical fluctua-
tions and a critical enhancement, Ak, due to the critical
fluctuations:

k = K g,y +A4K (1)

The thermal conductivity as a function of density is
schematically shown in Fig. 1. Outside the critical
region, the thermal conductivity, k, is to be identified
with the normal thermal conductivity, Knomal. Inside
the critical region, knorma is defined empirically by ex-
trapolating the behavior of the normal thermal conduc-
tivity outside the critical region into the critical region.
Excess thermal conductivity is defined as,

norm

kexcess = knormal -k* (2)
Where k* is the thermal conductivity at the same tempe-
rature of fluids in the dilute gaseous state.

THEORETICAL BACKGROUND

2.1. Brokaw’s Theory

Attempts to treat quantitatively the enhancement of
thermal conductivity in the critical region have been
limited because of the abrupt behavior in this region. To
explain this anomalous behavior, the enhancement was
attributed to the association and dissociation of cluster
diffusing in the presence of temperature gradient. This
approach was pursued to a considerable degree by
Brokaw [1].

He assumed that the thermal conductivity near the
critical point could be described in terms of reacting gas.
While he recognized that there exists a spectrum of
clusters sizes, for simplicity, the gas was assumed to con-
sist of a monomer and a single large cluster of n-
monomers, i.e.,

nX, — X, 3)

To obtain the anomalous part of thermal conductivity in
the critical region, he developed an expression as,

Ak = Cl CprD](Dln/Dl) (4)
where the reacting specific heat, C,, is defined as an ex-
cess specfic heat,

Cpr = Cp(Pv T) - Cpo(’r) (5)
and C, is a adjustable constant. This constant is deter-
mined by matching the theory to a single experimental
data point. Once C, is determined, the thermal conduc-
tivity over the entire region can be found. However, this
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Fig. 1. Schematic representation of the thermal
conductivity as a function of density at a
temperature slightly above the critical
temperature.

approach is difficult to use because it requires the in-
X troduction of many empirically determined constants.

2.2 Moie Coupling Theory

Theoretical prediction of the mode coupling theory
can be obtained from the simple argument of Arcovito et
al. [2] which assumed that the mobility of clusters is
purely a diffusional process. For the diffusional involve-
ment of these clusters, the Einstein relation for the diffu-
sion coefficient can be expressed as follows:

D= kT/¢ (6)
where k is the Boltzmann constant, T is temperature
and ¢ is a friction coefficient. When this friction coeffi-
cient is identified with the hydrodynamic friction coeffi-
cient predicted by Stoke’s law for a spherical droplet of
radius §, it becomes,

§=baug 0]
where y is the shear viscosity. Sibstituting Fquation (7)

into Equation (6), the diffusion coefficient becomes,
D = kT/6rpé )

Kawasaki [3] assumed a direct analogy between this dif-
fusion coefficient and thermal diffusivity to couple these
two phenomena into the relationship

KT/ 6rue 9

where Ak represents the thermal conductivity enhance-
ment in the critical point region and AC = C, - C,. In
the derivation of Equation {9) it is assumed that the
shear viscosity of # does not exhibit any anomalous
behavior near the critical point. This assumption is not
strictly justified. but the anomalous behavior of ¢ turns

Ak/p AC,
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out to be sufficiently small 50 that it can be neglected for
most practical purposes.

Equation (9) can be rearranged to present the
enhancement of thermal conductivity as follows:

Ak = (kTl6rug)p (C,-C) (10)
In order to make Equation {10} vanish for conditions
removed from the critical region, Harnley et al. {4] ex-
tended Equation (10) using an empirical asymptotic
function as follows:

Ak = (kT/6rp8) o (C,-CHHAT™, Ap*) (in)

where the function [{AT™, A *) satisfies the boundary
conditions,

ln FAT* 0% =1
AT* Ap*-+0

and
lim f(AT* Ap*) =1 12}
AT* Ap*— oo

where AT* = Ty - 1 and Ap* = py -1. Utilizing the
measurements for the thermal conductivity enhance
ment of carbon dioxide, Hanley et al. proposed the

form and developed the coefficients of this function to

be,

fLAT* Ap*) =exp{—18.66 |AT* [}

exp{—4.25 |4p* [ (13
Using the thermodynamic relation,

Ce—Cv=(T/p") (8P/8T);(Bp/ 0P} (14)
where (1/p) 9p/0P) is the isothermal compressibility and
substituting Equation (14) into Equation (11) the following
relationship results:

Ak~ [ikTY6zug) - (21/3T)p (9p/8P)<)/

exp(18.66 | AT* 1 44,25 Ag*1 9 (15)
where ¢ is a long range correlation length that represents
the average radius of the critical state clusters. This long
range correlation length can be determined experimental-
ly from light scattering or X-ray scattering data. Assuming
that the correlation length, §, can be approximated by the
Ornstein and Zernike formula, Sengers [5] obtained the
following relationship,

£ = R(nkTK* (16)

where n is the number density, k Boltzmann's constant, R
a proportionality constant, usually referred to as short
range correlation length and Ky isothermal compressibi-
lity.

The expression given by Equation (11) possesses
setni-empirical argunents for its development and satis-
factorily represents the thermal conductivity enhance-
ment in the critical region for a few substances for which
experimental information is available. Additional ther-
mal conductivity measurements in this region are need-
ed to tesl its applicability beyond the substances con-
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sidered. However, it should be recognized that the ap-
plication of this relationship requires extensive in-
formation for a substance in the critical region. More
often than not, such information is not readily accessible
and therefore the application of Equation (11) becomes
limited to substances whose physical properties are well
defined in the critical region.

GENERALIZED TREATMENT OF THERMAL
CONDUCTIVITY BEHAVIOR IN THE CRITICAL
POINT REGION

The throries and experimental data that exist at the
present time do not allow unambiguous resolution of the
question of the character of the thermal conductivity near
the critical point of a pure fluid. Even the modern theories
include a number of adjustable parameters or they pos-
sess physical properties at the critical point which are
very difficult or impossibie in the present level to measure
or predict. This lack of information makes current theo-
ries meaningless for the estimation of transport properties
in the ciritical region. Also, no unified approach in the
generalized manner has been attempted for critical ther-
mal conductivity behavior.

In this connection, a qualitative approach has been
mace to find the parameters strongly influencing the
thermal conductivity in the critical region. As a first ap-
proximation, the two commonly used thermodynamic
variables, temperature and density, and the two
characteristic parameters, critical compressibility factor,
Z., and De Boer quantum parameter, A*, have been
adopted. Therefore, the critical thermal conductivity
enhancement, 4k, can be generally

expressed as,

F 1Ak, AT* Ap*;Z:, A*) =0 (17
where A* is defined as,

A*=h/g(me) (18)

where h is Planck’s constant, m the mass of a molecule,
¢ the maximum energy of attraction and § the collision
diarneter for Lennard-Jones potential. The quantity A*
assumes large values for the quantum gases due to the
small values of the three factors & m and ¢ of these
gases,

According to the scaling method, Equation (17) may
be expressed with the scaling functions {4,*) and
g(Ap*) for the remaining variables Ak and AT* and
written as,

X (Ak/f{Ap*), AT*/g{A0™) ; Zc, A*)== 0 (19)
which can be soived for Ak/f(a ") as,

Ak=1{Ap*) UlAT*/g(4p%) ;2. A¥) (20)
In Equation (20)Ag* was chosen as a scaling variable for
the remaining variables, Ak and AT*. AT* can be also
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selected as a scaling variable to yield the following ex-
pression:

Ak=h{AT*)V{Ap* /K (AT*) ; Z., A¥) (21
The power law assumption near the critical point in-
dicates that the scaling functions f(Ag"), g(as), h(AT*)
and k(AT*) can be expressed as,

f{ap*=c| ap* |’

glAp*) —c | ap* I "

hiaT*)=d | AT* | *

k(aAT*)=d | AT*| ™ 22)
However, the conditions under which both Equation
(20) for Ap*- scaling and Equation )21) for AT*-scaling
describe the same physical function must be establish-
ed. The substitutuon of the power law assumptions,
Equation (22} into Equation (20) yields the following ex:
pression:

Ak=c | Ap* | *ULAT*/c | Ap* | #;Zc, A*)

= (AT*) As u( ‘ AT*l/u) /\U
(O] Ap* | /AT*7) "4/ 37, A*)
=c(AT*)**V | Ap* | JAT*"*; Z,, A*) (23)
where the functional relationship between U and V for
any physical variable, V, can be written as

V (viZe, AM) =VU #/c"; Ze, A*) 24)
The comparision of Equation (21) with Equation (23)
produces the relationships, which can be expressed as,

h(AT*)=c(AT*)*“and k . AT*) =AT*'"* (25)
Therefore, the relationships of the exponents in Equa-
tion (25) can be represented as follows:

=M and 7=1/u (26)
Thus, Equation (20) and Equation (21) are equivalent if
the scaling functions f{AZg), g Ag), h(AT*) andk(AT*)
are pure powers. However, Equation (20) will be used as
a basis for further development of the generalization of
thermal conductivity behavior near the critical point.
The values of the constant ¢’ and the exponent w in
Equation (20) may be obtained from the critical expo-
nent along the coexitence curve, 3, and the variable x
which were expressed as

Agt= 1 B AT * @7)
and x=AT*/ Ap*| "° (28)
Since x = x, along the coexistence curve, the following
relationships may be justified;

¢ =x.~=B'"* u=1/8 (29)

Thus, the thermal conductivity behavior near the critical
point in a comprehensive manner can be expressed as,

Ak /F(Ze, A*) = | Ap* | *W {x/x0) (30)
where the thermal conductivity parameter, ¢ .=
MI2T P /32y 5% was obtained from dimensional

analysis. In Equation {28), the absolute value do* is
taken if Ak ¢, is symraetric with respect to p=o .. Table 1
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Table 1. Basic parameters arnd deviations resulting
from Eq. (32).
Gas
Properiy) He3 Ar Xe €0,  H,0
M 3016 39948 131.30 44.01 18015
Te, °K 3.3082 15076 28973 304.11 647.13
Pc. atm 113 481 5764 7279 2176
pe glemd 00045 0533 1110 0468 0322
o 7299 7495 11829 9404 5631
ze §™9€ 0305 0291 0287 0274 0231
¢ 0.1340 0.0783 0.1421 0.0737 0.0298
o, A 256 3542 4047 3941 2641
e/x,°K 102 933 2310 1952  809.1
A* 3082 0202 00621 0.120 0.137
Xo 0489 0183 0183 0.141  0.100
f 0.0029 00532 ©0465 0.0569 0.1557
No. of
soints 4 6 72 60 26
% Dev. 824 1287 681 638 650

lists the values of ¢ Z, A* and x, for pure fluids in-
vestigated in this study. The values of x, were taken
from Sengers et al.[6]. The thermal conductivity data of
helium-3 [7], argon [8], xenon [9], carbon dioxide [10]
and waler [11] available in the literature were used to
show the characteristic behavior of each fluid. Fig. 2. in-
dicates that the anomalous parts of the dimensionless
thermal conductivities along the critical isochore,dk{#,,
AT*)¢..for these fluids have a linear dependence on AT*
in log-log coordinates with a slope of approximately
0.63, but with a slight curvature removed from the
critical temperature. Therefore,
Akege/T(Ze, A*)oc | AT*| 7 62)]

[n this figure, helium-3 with Z, = 0.305 and A* = 3.082

6px10 ° 1. Helium -3 s aee
4. ~. 2, Argon 0.291 0202
N i aE e
2r Cdiowde
\\\\\\ 5. Water 0231 01357
o s \\\ .
S (.6} .
X
0.2}
-1, 08
0. 06}
0. 04! . - "
0,001 0.01 0.1
AT*
Fig. 2. Relationship between the thermal conduc-
tivity along the critical isochore, Ak ¢,

and the normalized temperature, AT
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has the lowest value of Akc¢cand water with Z,=0.231
and A* = 0.137, the highest. This fact infers that the
critical compressibility factor and De Boer quantum
parameter strongly influence the enhancement of the
thermal conductivity near the critical point. However,
additional experimental works with different types of
fluids are needed to establish the actual functional rela-
tionship between Ak.¢. and Z, and A*.

It should be noted that Equation (30) has been
developed under the assumptions that the thermal con-
ductivity enhancement, Ak, is symmetric along the
critical isochore, i.e., #= p. and follows a power-law
behavior. The existence of a small asymmetry in Ak has
been confirmed in many experimental studies. Thus, it
becomes necessary to introduce a symmetrizing factor
in Equation (30) to overcome the asymmetric behavior
of 4k with respect to p= p.. The symmetrizing function
f(s, T) can be defined by the condition:

fipc~ Ap, T) Ak (oc - Ap, T)

=flpc+Ap, T) Ak (pc+ Ap, T) {32
The symmetrizing- function f(o, T), was empirically
found to be £ %%. In Equation (30) Ak has to be changed
to the symmetrized function, Akex'? so that the power
law assumptions can be justified in the neighborhood of
the critical point.

Akgeow /T (Ze, A*) = | A% | M W (x/x0) (33)
The value of Ais assumed to be temperature dependent
in order to more or less overcome the limitation of the
power-law assumption. The generalized behavior of the
thermal conductivity enhancement has been assumed
to have the functional expression of

log(Akgrepq” | 4p* | “TF £(Zc, A*))=allog { x+xo)/

xo) )P+ bUOg((x-Fxo)/Xo)]q (34)
where a, b, ¢, p, q and r are assumed to be constants ap-
plicable to all substances. A nonlinear regression

analysis with the experimental measurements of xenon
by Oosting have been used to produce the values of

a = -0.770858 p = -0.457740
b = -0.482894 q= 0.177897
c = 2.260902 r = 0.006463

Equation (34) with these constants has been applied to
heliurn-3, argon, carbon dioxide and water to yield the
values of f(Z, A*) for these substances which are
presented in Table 1. The generalized relationship for
the thermal conductivity enhancement of these five
substances are shown in Fig. 3. The average deviations
between the calculated values using Equation (34) and
the experimental values are included in Table 1.

It is difficult at this time o find the relationship bet-
ween f and Z, and A* with this limited information. Fur-
thermore, the power law assumption can only be ap-
plied in the close vicinity of the critical point. Therefore,
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Fig. 3. Generalized behavior of the thermal con -

ductivity enhancement of fluids in the

vicinity of the critical point.

this assumption has to be changed when an accurate
equation of state along the coexistence curve is
established.

CONCLUSION

A generalized equation has been formulated for the
critical enhancement to the thermal conductivity which
represents existing experirental data in the critical
region. This equation is based on the thermodynamic
behavior in the vicinity of the gas-liquid critical point
with well established thermodynamic properties. In
spite of the increasing demand on accurate data for ther-
mal conductivity near the critical point, a few ex-
periments for simple fluids have been carried out. Thus,
future works, both experimental and analytical, are
needed to resolve the issues associated with the abnor-
mal behavior of the thermal conductivity in the critical
point region in order to this generalized relationship to
many different types of substances.

NOMENCLATURE

a,b,c : constants

D : self-diffusivity, Cm?%sec

h : Planck’s constant

k  : thermal conductivity, cal/sec. cm °K

Ak critical thermal conductivity enhancement,
wcal/sec. cm°K

m  :mass of a molecule

p.q, r :constants

AT*  :normalized temperature, TR-1

X : density-temperature scaling variable

September, 1984

7

Xy value of scaling variable, x, along the coex-
istence curve

. - critical compressibility factor

Greek letters

A - critical exponent for coexistence curve

€ . Lennard-Jones force constant, maximum energy
of attraction

£ friction coefficient

X . Boltzmann constant

A* 1 De Boer quantum parameter

A, # :exponents in equation (20)

u : viscosity, poises

§  long range correlation length

7, $  exponents in equation (20)

Ap* :normalized density, pox - 1

o : average distance between molecular centers

¢ thermal conductivity paramenter, M%* Tc/Pc*
Vo6

Subscript

C critical constant

R reduced variable

Superscript

* dilute gaseous state
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